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Note 

Analytic Inversion of the Five-Point Poisson Operator* 

There are situations when the potential due to a single lint charge in an 
unbounded domain is of interest, and when this potential is to be the solution of a 
finite-difference Poisson operator and not that of the C2 operator. 

For instance, one may wish to study self-forces resulting from specific charge 
sharing [l] and interpolation schemes [4] applied to a potential due to, say, 
a five-point numerical Poisson solver. 

Also, if one has to simulate infinite space conditions on a finite boundary [2], 
one may wish to precalculate potentials on that boundary from the charge distribu- 
tion by direct application of a kernel, prior to filling in the interior potential values 
with the aid of a five-point finite-difference finite-domain Poisson solver. 

Furthermore, it is of interest to know exactly what potentials ought to be added 
to a distribution reached in the course of relaxation, in order to compensate a 
single residue at a large distance from any boundary. 

Lastly, one may like to have the standard ideal potential pattern (in the close 
vicinity of a single line charge) available for checking a program which is intended 
to solve the 5-point Poisson formula. (See Ref. [3] for a survey of Poisson solvers.) 

This pattern is shown in Tables l and II. The line charge is - 1 (Gaussian units) 
and is in the top left corner where the potential zero has been placed. At large 
distances the potential approaches 2(ln Y + constant) as for the C2 operator. The 
“constant” is (3/Z) In 2 + Euler’s constant when Y is measured in ccl1 mesh units. 

The important thing to realize is that Table I was obtained analytically and not 
by a numerical Poisson solver. Table II is Table I with substitutions for rr. Since 
there are no rigorous numerical 5-point Poisson solvers for an infinite domain, 
it was necessary to solve the finite difference formula analytically. 

The values 7 in the cells immediately adjacent to the charge are trivial: assuming 
the finite difference formula 

40 center - @north - @east - @south - @west .= 47r . charge, 

taking the charge e= - 1, aCenter = 0 and @north -: QCast = @s&h = GIVCst by 
symmetry, it follows that the common value of these four potentials is r. 

* Work supported by the United States Atomic Energy Commission. 
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TABLE I 

Potentials Created by a Negative Gaussian Unit of 
Charge in the Top Left Corner 

0 77 4z - 8 177 - 48 8Oii - 2453 

n 4 -77 $8 -8r + 30$ --495; -i- 160 

4n - 8 --n -t 8 5; ii + 2; 127i - 3126 

17n - 48 -&I -j- 30;; 7r +- 2; 65 -.ii + 9.2 
80~ - 2455 -49 $ 160 12n - 31i7g ---7 ’ + 9: J b-7.4 _ 1 03 

TABLE IT 

Decimal Equivalent of Table I. In Brackets: 
Deviations of Values from Those Obtained by the Logarithmic Formula 

0 3.1416 4.5664 
(XJ) (-0.0923) (-0.0538) 

3.1416 (,EZ) 4.8584 
(+0.0151) 

4.5664 4.8584 5.3333 
(+0.0200) 

5.4071 5.5399 5.8082 

5.9941 6.0620 6.2324 

5.4071 
( - 0.0240) 

5.5339 
(-0.0026) 

5.8082 
(%0.0093) 

6.1333 
! j 0.0090) 

6.4584 

5.9941 
(- 0.0124) 

6.0620 
(-0.0051) 

6.2324 
(+0.002x) 

6.4584 
(j0.0056) 

6.7&n? 
(-i-O.005 1) 

What is not at all obvious is the sequence of rational numbers along the diagonal, 
namely, 

0, 4, 4 -I- 4/3, 4 + 413 -i- 415, etc. 

We note, first, that these values give the correct field at points midway between cell 
centers, i.e., at cell corners, if simple diagonal differencing is used there: at distance 
r .I= (2n - 1) -\/2/2 we get a ticld 4/(2n -- 1) 42 = 2/r. This singularly good 
performance of the 5-point scheme is somewhat freakish--it is restricted to just 
these points along the diagonal. 

Having obtained the adjacent values n and the values along the diagonal, one 
can build up the remainder of the table by applying the five-point operator at a 
judiciously chosen succession of mesh points: for instance, the value 4n - 8 in 
in the top line or left column follows from applying the five-point operator at the 
“n” points and using the pattern symmetry. The multipliers of 7~ at every grid point 
are clearly integers. The denominators of the rational contributions propagate 
diagonally as shown in Table I. 
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To account for the diagonal sequence, we employ what is probably the most 
successful method for building a fast Poisson solver [3], namely, Fourier analysis 
in one dimension (the North-South direction) together with solving a three-term 
recurrence relation in the other dimension (East-West). In the first place we 
impose a periodicity of N mesh points in the North-South direction, but since our 
results are analytical, we can let N tend to infinity in due course. We define Fourier 
transforms 

M/P 
@m) = 

k 
1 &a) e-2nzkn/N, 

b-N/2 

where n is the index running along a column (N-S) while m runs across (E-W). 
The negative unit charge at n = 0, m = 0, has all transforms -. 1 for m = 0, 
zero for m f 0. 

For the k-th harmonic we have Gnorth -+ @ south = 2Qcenter cos(2&/N) and the 
recurrence formula becomes: 

G,y + &F6 $ &Eenter[2 cos(277k/N) - 41 = 0 

except when “center” refers to the column m = 0. In that case the right side is 4~. 
The solution is, for k i 0, 

$j;d = @)/K!ml , 

where K is obtained from k as that root of the quadratic 

K + l/K = 4 - 2 cos 2rrklN, 

which is greater than unity. By making 6 Lm’ decay with ! m 1, i.e., in both the 
positive and the negative direction, we ensure free-space boundary conditions in 
the East-West dimension. Solution of the recurrence relation which increase 
outward, or any admixture of such a solution, are not admissible. 

Taking “center” at m = 0 we now get a condition for CIAO, namely 

[(2/K) + 2 cos(2rk/N) - 41 6’k” = 4rr, 

or, with substitution from the equation defining K, 

&q’= -47r 
K- 1/K’ 

Special treatment is needed for the component k = 0 (uniformity in the N-S 
direction). This component, according to the recurrence relation form f 0, has to 
vary linearly with m and, matching across m = 0, one gets 
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rising symmetrically towards East and West. This choice implies that the periodic 
array of negative charges is solely responsible for the field, and that no external 
field is applied at infinity. It also implies a potential zero mean on /n = 0. 

Now we are ready to back-transform: 

where the prime in the summation indicates omission of the term k = 0. 
The potential relative to the origin (n = 0, m -7 0) is 

where we have defined the angle 

8 = 2lrklN 
and its increment 

68 = 27i’!N, 

so that we may now let N tend to infinity, with 0 becoming a continuous variable 
and the summation becoming an integration: 

(p) 
n _ Q(O) _ -2 -I ii e’O” 0 J i -s KI”‘I - l K - l/K ’ 1 

d0 

The exclusion of 8 = 0 from the summation becomes ignorable in the limit since 
the integrand remains well behaved and finite as 6 --f 0. Since K is an even function 
of 0, we can halve the range of integration: 

Trigonometric integrals are evaluated by introducing the tangent of the half- 
angle: 

dO/‘(K - 

t = tan 8/2, 

eio =.= (1 + it)/(l - it), 
-. 

K = [3t2 -: 1 I- 2t c’(2t2 -!- I)],/(1 + t”), 

l/K) = dt/[2t 1/(2t” f l)]. 
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A further standard transformation removes the square roots: 

t = d/z T/(1 - 72), 

dt = dZ{(l + ~“)/[(l - ~‘>“I} dT, 
O<T<l. 

.\/(2t2 -t 1) = (1 $ T”)/(l - TZ), 

dt/2t .\/(2P f 1) = drj2r, 

eie = (7 - vq(T + vq/(T + l/i& - d-i), 

K = (7” -I- d/z 7 + 1)’ = 72 + x0 7 -!- 1 (7 + lhj(7 + dq) 
74 + 1 72-%57+1 = c l/;)(7 - l/-ii> ’ 

where v%= (1 + i)/& so that 

(Here we readily verify that T = 0 is not a singularity of the integrand.) 
The evaluation of all potentials has thus been reduced to integrations of rational 

functions. We are interested in the diagonal terms where n = 1 m 1 and, more 
specifically, the potential differences along the diagonal: 

\ 

@tn) _ @-1) = 4R n n1 

= 4Re [(~7)‘^-‘]~/(2n - I), 

as can be verified by direct differentiation. At the upper limit, the square bracket 
is pure imaginary, as can be seen from applying Thales’ theorem to the triangle 
ht;cL, -v-- i inscribed into the unit circle. At the lower limit, one gets -1 and, 

> 
c#+$ - @k;” = 4/(2n - I), 

as used in the table. The potential at distance r = n dZ’ along the diagonal is 

4[1 + l/3 + l/5 + *-- -lr 1/(2n - 1)] 
= 4(1 + l/2 + l/3 + 0-a + 1/2n) - 2(1 + l/2 + l/3 $ **a + I/n) 
= 4(ln(2n) $- y) - 2(ln n + r) = 2(ln n + y + In 2) 
= 2(ln r + y + (3/2) In 2). 
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The table of potentials to compensate a unit residue in a relaxation algorithm can 
be obtained from Table I or 11 by complementing it with the boundary potential. 
Let us suppose that the boundary is circular about the origin and a little over 100 
mesh lengths away, 106, to be precise. Then In Y j. y -L (3/2) In 2 --_ 6.2832 -.- 2~ 
at the boundary, so that the table of compensatory potentials consists of 471 minus 
the potentials in Table II. This is for a unit residue in Gaussian units. Since 
relaxation is normally carried out in “rational” or “Heaviside” units, not including 
the factor 477, one gets Table ITI for the close vicinity of a unit residue to be 
compensated. 

TABLE III 

Potentials to Compensate Unit Residue at Top Left Corner with Boundary 106 Mesh Units Away. 
Values Beyond Range of Table are Less Than 0.5 

1.00 0.75 0.64 0.57 0.52 
0.75 0.68 0.61 0.56 0.52 
0.64 0.61 0.58 0.54 0.50 
0.57 0.56 0.54 0.51 0.49 
0.52 0.52 0.50 0.49 0.47 

In view of the large area covered by nonnegligible and smoothly varying values 
in Table III it is suprising that the old scheme of compensating a residue by a few 
local potential corrections ever worked. 

RECLIVED: April 2, 1971 
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